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ABSTRACT

In view of the experimental evidence that localized diamond-

shaped buckling patterns are usually observed in the buckling of

cylindrical shells under axial compression, the postbuckling behavior

of such shells is analyzed by the use of an asymptotic unperiodic

function instead of the periodic buckled pattern previously used by

other investigators. After determining the arbitrary coefficients

in the deflection pattern so as to satisfy the conditions of continu-

ity along the center line, the postbuckling behavior is determined by

the method of solution previously used, that is, from the minimum

condition of the total potential energy and total strain energy with

respect to several parameters for the case of dead-weight loading and

for the case of rigid-testing-machine loading_ respectively. The

analysis shows that nearly square diamond-shaped and damped (in other

words, localized) buckled patterns, as usually observed in experiments,

give the minimal values of the energy. However, the minimal value of

the buckling stress obtained in this paper is higher than the values

obtained for the periodic buckled pattern. This may be due to the

imperfect satisfaction of the conditions of continuity along the center

line and to the inaccuracy of the assumed buckled pattern. For this

reason, improvements in this analysis are currently sought.
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i. INTRODUCTION

The elastic stability of thin cylindrical shells has recently

become important because of an increased application of thin shells

in missile structures.

As is well known, the buckling stress value predicted by the linear

theory based on small deflections is much higher than the experimental

values. Many attempts have been made to explain this large quantitative

disparity for cylindrical shells. First_ the nonlinear theory based on

finite deformations which was successfully introduced by Karman and
i*

Tsien more than two decades ago_ has contributed much to the under-

standing of the essential reasons for the large discrepancy between

classical theoretical and experimental results. However, in this

original paper, due to mathematical difficulties encountered in the

nonlinear theory, the analysis was carried out by specifying some para-

meters in an arbitrary manner; in this respect, the study was not com-

plete from the physical point of view. Thereafter, the "jump" or "snap

through" theory has been improved and enlarged by the cumulative efforts

of subsequent investigators 2_3'4_5_6. For example, more general treat-

ments in which the ratio of wave lengths is determined by the stationary

condition were presented by Leggett et al 2 and Michielsen 3, and a more

rigorous calculation of the postbuckllng behavior of a perfect cylin-

drical shell was presented by Kempner 5. The latter was improved by

Almroth 6 who obtained a lower minimum postbuckling load than Kempner 5

by considering a larger number of free parameters in the displacement

function.

However_ all these analyses of the postbuckling behavior of an

axially compressed cylinder assume a periodic buckled pattern over the

whole surface. As can be seen from the experimental results, this mode

of deflection has not been observed 3 but localized diamond-shaped

buckling patterns have usually been found 7_8. Yoshimura 4 showed that

Superscript numbers indicate entries in the References at the end

of the report.
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this type of local buckling could take place at a lower stress than the

general buckling of the whole surface; an inextensional large-deflection

pattern was employed in an analysis based on the energy barrier and the
Tsien crlterion9 The difficulty encountered in such a local buckling

problem is that the deflected shapeis not exactly polyhedral. If the

buckles do not cover the entire surface of the cylindrical shell, part

of the shell wall must be subjected to membraneand bending stresses,
and the deflected shape cannot be maintained without an external load.

Hoff I0 analyzed this local buckling problem, with somesimplification,

by taking into account the plastic deformation along the ridges separa-
ting the buckles.

In this paper_ the postbuckling behavior of a circular cylindrical
shell under axial compression will be analyzed with the aid of an

asymptotic unperiodic function under the assumption of local buckling
exhibiting only diamond-shapedtwo-tier buckles. The work described

can be considered as a continuation of the work of the previous
investigators I_'2'3'5'6 Accordingly, the method of solution employed

is the same: thus the analysis starts from an approximate function for

w , which contains arbitrary parameters, and the stress function is

then determined from the compatibility equation. However_in this case_
the assumeddeflection pattern was madeto satisfy the conditions of

continuity at x = 0 and thus it applies to both the upper and lower

parts of the cylinder. Next, the potential energy is calculated by the
use of the membranestresses and the assumeddeflection. The values

of the arbitrary parameters can then be determined by applying the

principle of stationary total potential energy to the system.

In addition to the disagreement of the buckling loads_ the test

results show large scatter in all cases, exceeding by far the scatter
found in tests with bars and plates. Initial imperfections and the

elasticity of the testing machinesmayhave a great effect on the
results, and muchresearch workII has been devoted to a clarification

of this situation. However_in this paper_ such effects will be

disregarded. The local buckling of a thin-walled cylindrical shell

- 2 -



with uniform wall thickness without stiffeners, subjected to a com-

pressive load fixed in the axial direction and uniformly distributed

along the circumference, will be considered. The limiting cases in
which the shell is loaded in either a dead-weight or a rigid testing

machine are discussed.

- 3 -



2. NOMENCLATURE

The following coefficients are all functions of _, p and q :

A£pq, B_pq = quantities defined by Eq.(22)

C£pq, D_pq= quantities defined by Eq.(47)

L£pq, K_pq= quantities defined by Eq.(49)

J£pq, O_pq= quantities defined by Eq.(27)

M_pq, N_pq= quantities defined by Eq.(32)

P£pq, Q£pq= quantities defined by Eq.(47)

The following coefficients are all functions of _, p, q and m :

X£pq,m' Y£pq,m(m = 1,2) = quantities defined by Eq.(20)

U£pq,m,W_pq,m (m= 2) = quantities defined by Eq.(33)

R_p%m, S£pq,m (m = 0,1,2,3) = quantities defined by Eq.(55)

Z • a coefficient which is a function of _ only,

defined by Eq_(20)

C .C
r" s

{_i_jPiPjq,G_i_jPiPjq, quantities which are functions ofand defined by Eq.(46)

_H_i2jPiPjq'l_i£jPiPjq

YP, ZP

D = Et3/i2(i-v2)

integral constants in the stress function

_iJ _j,Pi,Pjq

quantities which are functions of

£i,_j,Pi,Pj,q,mi,mj and defined by Eq.(45)

bending stiffness

E modulus of elasticity

F Airy stress function

L half length of shell

R mean shell radius

-4-



W I,W 2,Wp extensional strain energy_ bending strain energy,

and potential of applied load, respectively

IW' W' W' -

_ i' 2 ' p - nondimensional quantities

[W1 ,W2,Wp/(_ 3_/R)

W' = nondimensional total potential energy
(Wl+ W2+ W )I_3_/R)

P

W' = nondimensional strain energy
(Wl+ W2)/(_SnS/R)

a i,bj, C_

_m,p,q_r, s

n

t

ll_v,w

x,y

C ,£ _,
x y _xy

x y xy

2&

E

:b/ x
--

arbitrary coefficients

positive integers

number of circumferential waves

wall thickness

axia_ circumferential, and inward radial displace-

ments, respectively

axial and circumferential coordinates on median

surface of shell, respectively

deflection parameters [see Eq.(18)]

damping parameter in axial wave form

axial, circumferential and shear strains on the

median surface

changes of curvatures and unit twist of the median

surface

maximum amplitude of deflection

unit end shortening

ratio of the circumferential and axial wave lengths

nondimensional damping coefficient

_



v

(7

y xy

axial and circumferential half wave lengths_

respectively

Poisson's ratio

applied average axial compressive stress

axial_ circumferential and shear stresses on

the median surface_ respectively (positive in tension)

deflection parameter

The following quantities are all functions of

g; k

e; f, h

I;M;J_V_T

©®©

,_©®®

PO@ $

$ @@

@@

®®®
®®
@®@

quantities defined by Eq.(25)

quantities defined by Eq.(36)

quantities defined by Eq.(42)

quantities defined by Eq.(38)

quantities defined by Eq.(58)

quantities defined by Eq.(60)

quantities defined by Eq.(57)

quantities defined by Eq.(54)

quantities defined by Eq.(65)

quantities defined by Eq.(68)

quantities defined by Eq.(61)

quantities defined by Eq.(73)

quantities defined by Eq.(48)

quantities defined by Eq.(50)

quantities defined by Eq.(53)

and @ :
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suffices "x" and "y" denote differentiation with respect to

x and y _ respectively

suffices "_" and "u" denote the lower and upper half of the

cylinder, respectively

-7-



3. BASIC RELATIONS

The basic relations necessary for solving the local buckling of

an axially compressed thin-walled circular cylindrical shell are given

in reference [5] and are reviewed here.

In the following investigation it is assumed that the cylindrical

shell is long enough so that the boundary effects at the circular edges

may be neglected_ and short enough so that there is no danger of

buckling as a tubular column.

3.1 Median Surface Strains and Changes of Curvature

With terms up to the second order included 3 the median surface

strain components and the changes of curvature are expressed in terms

of the displacement components and their derivatives as follows:

C = U
X X

i 2 w

g = V + Wyy y _ -_

_xy = U + V + W Wy y xy

(i)

x= Wxx, _y= w, _xy Wxy (e)

3.2 Median Surface Stresses

The axial_ circumferential and shear stresses on the median

surfaces are given by

-8-



_, _ l 2 (v 1 2 w) __' (_x+ vc,) - -v2 LUx +_w + v + Wy_x- l_v 2 Y 1 x y _ "_ ]

E

Y l-v l-v 2 Y _Wy - _ + v +_w x

E

Txy= _ (uy+v +ww.)x x y

(3)

J

3.3 Total Potential Energy

The total potential energy is given by the sum of the strain energy

W and the potential energy of the external force W
s p

The strain energy W is composed of the following two parts:
s

the extensional strain energy W 1 , where

L 2_R

t o_ _ [(ax+_y)2 - 2(l+v)(axay- T2xy)] dxdy ;W1- 2E
(5)

and the bending strain energy W 2 , where

2_R

(Wxx+_rJ) - (Wx_W_- (5)

in which D =
Et 5

The potential energy of the axial stresses applied to the ends of

the shell can be expressed as

2TR L

o#°xLo#W = - t ( dy u dx . (6)
p _ x

-9-



4. EQUILIBRIUM AND COMPATIBILITY EQUATIONS

The equilibrium equations and the natural boundary conditions can

be derived by the variational process from the stationary principle of

the total potential energy.

The equilibrium equations are

_a _T

-_--+ =
0

D V4 a-- w = a w + 2T 'w + _ .w + -_
t x xx xy xy y yy R

in which V 4 - _4 _4 _4
+2 +---_

_x 4 _x2_y 2 k_y

The equations of equilibrium in the median surface are identically

satisfied by the introduction of the Airy stress function F(x,y) which

is defined by the following relations

=F , T = -F a =7 (8)ax yy xy xy ' y xx

Then the equilibrium equation in the normal direction is reduced to

D _4 w i
y =7 w 2F w +F w + _ (9)yy xx xy xy xx yy R xx

By eliminating u and w from the formulae in Eqs.(1) and by

using the stress function_ the compatibility equation can be obtained

as

V4F 2 i

E - Wxy - w • w - - w (i0)xx yy R xx

- i0 -
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Notation and Sign Convention
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Fig.2 Assumed Deflected Shape
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5. APPROXIMATEDEFLECTEDSHAPE

It is usually observed in experiments4'7'8 that cylindrical shells

buckle into the so-calleddiamond-shaped pattern, exhibiting local

inward-buckles of only two tiers as shownin Fig.2. The _reviously

published analyses of the post buckling behavior of an axially compressed
cylindrical shell assumedperiodic buckling patterns over the whole

surface° In this paper, a dampeddiamond-shapedpattern_ as usually

observed in tests, will be considered.

The origin of coordinates is taken at the midpoint of a ridge

between adjacent diamond-shapeddents as shownin Fig.2_ since the
deflected pattern is antisymmetric about this point. The x and y

coordinates are taken in the axial and circumferential directions,

respectively. First, an expression representing an approximate deflec-
ted shape for the lower half ( x _ 0 ) of a cylindrical shell will be
considered.

A dampeddiamond-shapedpattern is expressed by the product of two
functions as follows:

w = Wdamp(X)'Wdiao(X,y) (n)

in which Wdamp" denotes the damping function and Wdia. denotes the

diamond-shaped deflection function.

The Wdia. functions used by several previous investigators are

based on the following expression introduced by von Karman and Tsien I

Wdia. = f_ in _- x + sin Try-
x

= A -_- cos cos 7"- sin
x y x y

(12)
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in which the square is introduced to account for the fact that the shell

has a definite preference to buckle inward, and in which k and k
x y

are the unknownhalf wavelengths of the buckles in the axial and cir-
cumferential directions.

The expression will be modified in the present paper. The constant

coefficients in Eq.(12) will be replaced by arbitrary parameters and

more terms will be used in the function of x to make it easier to

satisfy the conditions of continuity along the center line ( x = 0 )o

In addition, the term of cos 2by in Eq.(12) will be dropped, to take

into account the fact that the ridges become very nearly straight after

buckling. Accordingly, Wdia. is expressed as follows

even Qdd

Wdia.= _ a'c°siax+ _ b" sin jax sin by (13)1 J

i=0,2,.., j=l,S,..

where a = _/kx,_ b = _/k and i and j are taken as even and oddY

integers, respectively, since the deflection pattern is antisymmetrical

about the origin of coordinates.

The damping function Wdampo(X ) is expressed as

-_x (14)Wdamp" = C_ e

=1,2,...

and finally, the approximate deflected shape is represented by

w£ =

even odd

)Cie a.l cos iax+ bj sin jax sin by + Co

2=1,2, ... ki=0,2, ... j=l,5, . ..

- 13 -



by adding a constant term C , which expresses a uniform expansion
O

due to the uniform axial compression.

The conditions of continuity along the y axis ( x = O ) are as

follows° From the continuity of deflection, slope, bending moment and

shear force normal to the shell, the following conditions for w can

be obtained:

w_ = w (_.l)u

w_,x = - Wu,x (B.2)

W_,xx = w (B.5)U,XX

W_,xxx = - Wu,xxx (B.4)

From the continuity of the axial and circumferential displacements, and

of the membrane and shearing stresses, the following conditions for u

and v can be obtained:

U_ = - U u

V_ = - V u

U_ = U,X U,X

V_, x + W W = V£,x _,y u,x
+ w w

u,x u,y

(B. 5)

(B,6)

(BoT)

(_.8)

The other conditions necessary for the determination of the arbitrary

constants are

2_R

of OxdY = 2_-Ro (B. 9)

a dx = 0 ; zero average circumferential stress
Y

(B. i0)

- 14



v must be a periodic function of

term for y in the expression of

y ; the nonperiodic

v should be zero
Y

(Boil)

In order to check these conditions along the y-axis by using the same

deflected form (Eq.(15)) in both halves, it is enough to replace (y)

in the lower half by (-y) in the upper half due to the antisymmetry.

First, in order to satisfy the first four conditions (B.I) to (B.4)

for w , it is sufficient to specify Wdamp" only. Thus w becomes

i<x4e-2Bx -3_x 1 I even
+ e "i=O,_,... ai

cos iax

Jodd

+ _ b. sin jax sin by) +yj (16)

J=l,3, ...

More arbitrary coefficients of ai and b. should theoretically0

be retained to satisfy all the other conditions, but this would make the

analysis very complicated. Accordingly, for the sake of simplicity,

only the important conditions are considered here, and conditions of

(Bo4) and (B.8) are neglected. This means that the continuity conditions

for shearing stresses in the surface plane and normal to the surface are

not satisfied, w can be simplified to read

t[(0xw=_-- e-
n - _ e _(B-cos 2ax) + 2 sin ax sin by + y

(17)

where B, _ and _ are the arbitrary coefficients to be determined

from the other conditions, as will be shown later.

The damping functions in equations (16) and (17) are compared with

each other in Fig.3 with a parameter of _' = (_kx) , from which it can

be seen that (2e "_x- e-2_x) is close to ½(5e-_X- re-2_x+ e -3_x) and

is sufficient in accuracy.

- 15 -
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Further_ in order to prevent _ becoming a function of _ , one

more term for _2 is added, and then the deflected pattern is finally

expressed as

w:_t[le-OX_ _-_Oxll 1 1- _ e _(5-cos 2ax)+2 sin ax sin by + 7

+ _2 _t _(e-_X _ _i e-2_x) (18)
2

- 17 -



6. STRESSFUNCTION

Equation (i0) can be solved to give the stress function F , from

which the membranestresses and hence the displacements u, v can be
determined. Introduction of the assumeddeflection w of Eq.(18) into

the right-hand side of the above equation leads to

_74F t2b4_ Z
E _2

_=i_2 Pc=0,2

(ps= i)

_, - £_X{x sin pax)e \ £pq_l cos pax + Y_pq_l

qc= 0

(qs=l) [_ cos qcbY]

×[(sin qsbY)]

2t2b4 _ _
+_ _

_=2,5,4 Pc=O,2 qc=0,2

(Ps=I,5) (qs=l)

_ _2 t2
__b4_2(e-_ x_ 2e-2_x).

-_X/x
e < Spq_2 cos pax +Y_pq;2 sin p

[ c°s qcbY ]

×[(_ sin qsbY_

2 t2 _ -£_x
-_b4_@2 f__ Z_ e

_=2,5,4

sin ax sin by (19)

in which
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7. DETERMINATION OF ARBITRARY PARAMETERS AND INTEGRATION CONSTANTS

The arbitrary parameters in the approximate deflected shape and the

integration constants in the stress function are determined as follows:

First, only the nonperiodic terms for y are considered in pursuit

of the condition of Eq. R/D), since the integral of the periodic terms

for y over the circumference reduces to zero. Of course, this condition

should be satisfied at any value of y

Because only a locally deflected pattern and a rather long cylinder

-_L
are considered, e can be put equal to zero. However, if the cyl-

inder is short and the damping coefficient _ is small, then the analyt-

-_L
ical results will lose their accuracy. If terms of e are neglected,

the condition of Eq.(BlO) can be written as

_, _ [(P_B £po- 2xpA_po )X_po, i+ (IAuA_po+2X#B _po) Y2po, i1
2=1,2 p=0,2

_,3,4 p=0,2 (24)

Upon substitution of the values of

O
in Eq. (24) and setting both terms of

Xlpo,l' Y_po,l; XZpo,2' Y_po,2

and _' equal to zero, _ and

5 can be written as functions of _ and @ only:

(25)
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where

J_pq =

0 _pq =

22 °22 2-

p _ -z @ -vq )A_pq + 2p24_@B_pq

(p22_ 22_vq2)B pq_ 2p  a pq
(27)

The condition of (B.19 , that the displacement v must be a periodic

function of y , leads to the determination of 7 such that

z (28)V Et = - _ '

since the terms which are nonperiodic in y and periodic in x become

zero identically. It should be noted that 7 is a constantj which

means a uniform radial expansion due to a uniform axial stress. However,

it is not an independent parameter in the case of the undamped, periodic

deflected pattern discussed before 5.

Integration of v with respect to y leads to
Y

-rbx _, -sbxv = (l+v) b C re sin rby - (l+V) b C se
r 8

r=2,4,.., s=!,5

cos sby

t2 _ Z _.l-_x-_b -eq

q 2=1,2 Ps=l qs=l

X _(J£pqX_pq,l-0£pqY_pq,l)C°S pax+(O_pqX_pq,l+J_pJ_pq,l)sin pax}(- cos qsbY)

2t2 _ --_ _'

b i -_X_x-_ --e

_=2,3,4 Pc=O,2 qc=2 q _ 2pq,l _ X_pq,2 ' Y Ipq,1 _ Y Ipq,2

sin qcbY

(Ps =1'5) (qs =1) X (_ G cos qsbY)

- 26 -



t 2
- _--_ b (2e-Gx- e-2_x) sin ax cos by

_ i 2 t 2 _ -3_x+ i -4_x)¢ -_ b (e-2_x e _ e sin 2by

t2+¢ --_b_@ 2

q 2=2,5,4

Zie-£#X(O_ll cos ax - J£11 sin ax) cos by (29)

In order to satisfy the boundary condition of Eq. _.6), the terms

in cos sby(s=l,5,...) should vanish, since the terms of sin rby(r=2,4,...)

satisfy that condition identically. From this condition, the following

relation can be obtained:

c = o (s = 3,5,...)
s

2 2=2,5,4 Ps=l,5

C _
x (J,_plXepl,2-o_pl_,_pl,2)- 3_2 )

2=2,5,4
Z£0£II 1

(3o)

__Nexh, from Eq.(1), u can be written as
x

- 27 -
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where

and

M_pq = {q2-v(p2_2-12@2)) A_pq - 2vp_u@B_pq

N2pq = <q2-v(p2_2-£2@2)> B£pq + 2vp_@Aipq

U202,2

U3o2.2-- 4(_2+2_).

= -(_2+42).
U402,2

U211, 2 = -8(i+25)iJ.@,

USII, 2 = 12(i+25)_,

u411,2 = -4 ( i+2_)_,

U222, 2 = -4(I_2-@2), W222, 2 = 81a¢

u322.2= 4(_2-23)' w322.2 : - z2,_

u422,2 = -(_2-4_), w422,2 : 4_

U251, 2 = 24_¢, U211, S = 2_

U331, 2 = - 36U¢, USII, S = -_

U431_ 2 = 12_, U411, S =

(32)

(33)

In order to satisfy the boundary condition of Eq.(B.7), the terms

of sin by should vanish since the terms of cos rby (r=0,2,...)

satisfy that condition identically. From this condition_ the following

relation can be obtained, since Z Z UIpI, 2 = 0 and
/=2,3,4 p=l,3

= 0 :
Z U£11, 3

2=2,3,4

t2[ 
11 2

- o_o _ _ (M_plX_pl,2-N_plY£pl,2)

£:2,5,4 p=l,5

2=2,5,4
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From the conditions of Eqs.(30) and (54), the following equation

can be obtained by eliminating CI :

(35)

where

g(_,_) :

k(_,_) :

Z (P_IIX_II,I-Q£11Y_II,I)
2=i_2

Z Z (P_plX_pl, 2-Q£piY£pi,2 )
_=2,5,4 p=l,5

@2 Z Z_Q£11

2=2;3_4

Z Z (P£piX_pi,2-Q_piYipi,2)
/=2,5_4 I)=1,5

(.36)

Then, CI is given by

where

t2
(v_+T_3)(i+v)Ci - 2

n

V = I + Jg

T : _(Jk-M)

I(_,@) = (M£11X£11'I-N_IIY_II'I)

2=1,2

J(_'@) = _ Z (M_plX_pl,2-N_plY_pl, 2)

2=2_3,4 p=l,3

2=2,5,4

(38)
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The integral constant C can be determined so that the constant terms
a

in y(qc=0) will be zero at x = 0 e

In order to satisfy the boundary condition of Eq.(B.5),

C = 0 (r _ 4,6,...) (40)
r

and the terms of cos 2by (r,qc=2) should be zero, since the terms of

sin by satisfy this condition identically. From this condition, C2

can be determined as follows without including _, 5 and 7 , which are

not included in X_p2, 2 , U£p2, 2 and Wip2, 2 :

2(l+v)c 2 -__ _ -_
2=2,3,4 p=032

i

(p22+_23) {(_p2+m"_p2 )x_p2,2

(41)

Consequently, all the arbitrary coefficients in the expression for

w and all the integration constants in the expression of the stress

function are determined as functions of _, q_ k and @ . Thus, the

damped diamond-shaped deflection pattern w is finally given by

w ,I
= (e+f2)+(g+h2)cos 2ax +2_ sin ax sin b

42)
in which e = - 8g , f = _ - h8 , h = _k

_, _ are given by Eq.(25) and k and g are given by Eq.(32). Because

e, f, g and h are all functions of _ and _ only, it is convenient

to use this new nondimensional expression for w to obtain the energy

expression. With the use of this expression for w , V4F/E of Eq.(19_

is expressed by the sum of the terms of w as follows:
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_=2,3,4 p=0,2

i

p_W _p2,2 )+ _ (&m_p2,2+

2=2 _3,4 lO=0,2

- l+v

(48)

X202, 2 = R202_ 2 = 2_2_

i,_ 2 2_

X302_2 =R_02,2 = - _ -@ ),

1 2

X522, 2 = R322, 2 = - _ @

X402,2 = R402,2 =

(49)

2=1-4 I:_i,5

_=i-4 i:=1,3

_(5o)

V= l+Jg

e= 5g ,

, T = {(Jk-M)

Jf= _-h5 _ h= _k

(5z)
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¢( 2+ii I

k

g w

2
M =

J __.

4

(_2_2 ) (_<2)

2
g Z_Q_l 1

_=2_5,4

Z Z (PiplX£pl,2-Q£plY_pl,2)
2=2,3,4 p=l,3

KN

KD

_ Z (PIIIX£11,I-Q£11Y_II,I)
/=i_2

Z Z (P£plXipl,2-Q_plY_pl,2) -
_=2,3_4 1:=1,3

GN

KD

Z (M_IIXIII,I_N211Y£11,1)

2=-ij2

_, _ (M£plX_pl,2-NIplY_pI32)

2=-2,3,4 p=l,3

(52)

=v z+--J-

_ 2VTl+v

= T T

(53)
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The bending strain energy W$ = W2/(Trt3LE/R) is:

W2= q ,' (56)

2

= 12(l_v2)q(_ $2@4_$_+_)

z [z i (z14+_4+2422+222+e2+iZ)(D - 12(i---2)_ 7 ef_2+_ (57)

12_6+72_ 4_2+57_2(#4+12 2

X (2+@2)(4 2+9@2)( 2+4@2 )

3' 6 _ 4 2 _. 2 4 _6 ^ 4 2 2+8<#4+ 2+112 )

4 (_2+_ 2 ) (4_2+_ 2 ) (_2+4J)
(58)

+
(z6 _+_2 ) 12
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'= w I(_3_IR) is:
The potential energy of the axial stress Wp P

(59)

= _ ! 48(4 2+9@2 ) + 2 _ef+2 @gh+_ (eh+fg

@ = _ f2+® h2+® f

> (60)

@ = 176_4+i15_2_+1&P_
24(16_2+_2)

© =2/=2

> (6_)

The unit end shortening of an axially compressed shell ( e ) is the

ratio of the total shortening in the axial direction to the length of the

cylinder; it can be defined as

L
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Through the use of Eqs. (i), (42) and (43), _ can be given by

(63)

It can be seen from this equation that _ enters into the relation
L

between u and c ; this is different from the case of overall undamped

buckling.

(i) First the case of dead-weight loading will be considered. The total

potential energy W can be expressed in the nondimensional form as

where

w': (Wl+w2+wp)/(_3_/R) : [°R/2 R_ ,- \_-_] + W t

Wt, = -5/2(__ E"trl°'R (_)+ r12 )(_

® =® +2©+4 ®+_ ®

@ : © + 2 ® + 4 @

(64)

(65)

In order to determine the postbuckling characteristics of the axially

compressed shell_ it is necessary to determine the deflection parameters

_, @, _ and _ from the condition that the total potential energy ( W' )

of the system has a stationary value with respect to any small variation

of the parameters.

W' is a simple function of w and q , and so the following two

equations can be easily obtained from the conditions of (_W'/_) = 0 and

(_W'/_) = 0 , respectively.
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where

- n©+ ®=o

5®-3 n@+ ® = o

_D = © +2_,2®+3_4®

©-- ®+2_2@

(66)

(67)

(68)

However, since _ and @ appear in the expression for W' in a rather

complicated manner, it i8 too difficult to get analytical expressions

for _W_/_ = 0 and _W'/_@ = 0 . These conditions can be expressed as

®

= o (69)

= o (7o)

As a principle of solution, the four deflection parameters can be

determined from the above four nonlinear algebraic equations (66), (67),

(69) and (70), under a constant value of e and then a relation between

(_R/Et) and _ can be obtained. This relation can be replaced by the

load-deflection curve, (aR/Et) versus c , by use of the relation of

Eqo(63).

As stated above, W' is a very complicated function of B and

@ and so, for the numerical process, it is more expedient to fix

and @ (under a specified value of _ ) and then to solve for (aR/Et)

along with the remaining deflection parameters, than it is to fix (aR/Et)

and to solve for all the deflection parameters. That is to say, the

following numerical successive approximation procedure will be used:
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First_ a set of values of _ and @ and a value of _ is assumed.

Then, (R/Et) and _ can be determined from Eqs.(66) and (67) as

follows:

2
_o -- - ©/® (71)

2
(oR) _ _ Noo o(QD (72)

where

(73)

Through use of these values of (aR/Et)o and qo ' Wt' can be

calculated for given values of _ _ _ and @ . This procedure is

repeated for several assumed values of _ and several sets of _ and

@ The particular set of _ , _ and _(_) which minimizes the value

of W't for a fixed value of (aR/Et) is the one which we are looking

for. Through changing the specified values of (qR/Et) , the relation-

ship between (oR/Et ) and (_R/t)

curve.

In this case; the length L

can be obtained and plotted as a

of the cylinder has no effect on the

deflected pattern and the postbuckling stress_ but it has an effect on

the load-shortening curve through Eq.(65) with a parameter of (_/L)

(2) The case of the rigid-testing-machine loading will now be considered°

In this case 3 the sum of W I and W 2 _ that is_ the elastic strain

energy should have a stationary value for a constant value of c Thus,

5Wp = 0 , since no axial displacements are permitted. (WI+ W2) can be

expressed in terms of c rather than e with the aid of Eq.(65) as

follows:

W" : (WI+ W2)/(_tSLE/R ) : c + W"s (74)
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where

S

-5/2

In order to determine the postbuckling characteristics of the axially

compressed shell in a rigid testing machine, the deflection parameters

_ @ , _ and q should be determined by the same process as described

in i), with the exception that (oR/t) should be maintained constant

instead of (_R/Et) Since W" is a simple function of _ and q ,

the following two equations can be easily obtained from the condition of

(_W"/_) = 0 and (_W"/_q) = 0 , respectively.

+_ 1 -1/2

2® (R) _S-_/2@2
-S_@+_®+ _ =0 (76)

The value of qo can be given by eliminating (oR/t)

and (76):

from both Eqs.(75)

2
= - _ / _ (71a)qo

This is the same as Eq.(71); and (_R/t) is obtained from Eq.(75) as

_o®+ _

(R) _ _o R_ -3/2@c_" ° @_.) + 'q 2
(77)

Next, (GR/Et) o is given by

- @ (72a)
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which is also the same as Eq.(72).

This means that both the case of dead-weight loading and the case

of rigid-testing-machine loading lead to the same relationship between

load and shortening under a specified value of (_/L) .

However_ as stated before, the unit shortening c R/t depends on

the value of _/L , and so the buckling stresses depend on (_/L)

under specified values of shortening_ On the other hand, it has been

pointed out in the many experimental reports, for example, those mentioned

in reference [12] , that the buckling stresses for the case of rigid-

testing-machine loading depend not only on the values of R/t , but also

on those of L/t This fact is verified by the above analytical results.
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9_ NUMERICAL RESULTS

As was shown in the preceding chapter, the two cases of dead-weight

loading and rigid-testing-machine loading give the same relationship

between load and shortening, Accordingly, the equilibrium curves will

now be obtained for the latter case of loading in a rigid testing machine.

Most experiments have_ of course, been performed in approximately-rigid

testing machines, because a dead-weight loading condition would inevita-

bly give large postbuckling deflections, which would result in plastic

deformations and make it impossible to check the buckling mechanism.

First, as an example, the variation of the calculated values of

(_R/Et) ° , (cR/t)o and _o against _ is shown in Figs_4(a), 4(b)

and 4(c), respectively, for the case of _ = 1.05 . These curves were

obtained from Eqs.(71), (62) and (72), respectively, by satisfying the

minimum condition with respect to _ and _ only. In the numerical

calculation Poisson's ratio was set equal to 0.5 and the curvature ratio

_/L was set equal to 0.015 in the calculation of cR/t (for this

example)o The effect of the curvature ratio Rt/L will be discussed

later° Both of (aR/Et)o and (cR/t)o have minimal values with respect

to w , which means that minimal values of these parameters exist in the

postbuckling equilibrium states. Next, the variation of W" against
S

(CR/t)o as a parameter of @ is shown in Figs.5(a) and 5(b) for the

same _ = 1.05 Fig.5(b) is an enlargement of Fig. 5(a) in the region

of small values of (cR/t)o . The values of _ on each curve are varying

as shown in the parentheses on the curve of @ = 0.25_ for example. Each

curve forms a cusp and it seems that the lower curve corresponds to stable

equilibrium states, while the upper curve corresponds to unstable equilib-

rium states,

For the case of rigid-testing-machine loading_ which is now con-

sidered, a value of (oR/t) should be specified. The variation of W"
s

with respect to @ can be plotted as shown in Fig.6 for the specified

value of cR/t equal to 0_48, as an example. The values of W" have
s

some minimal values with respect to ¢ for a specified p This means

that the damped deflection pattern exhibiting a local buckling pattern
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will be more reasonable than an overall sinusoidal pattern in the axial
direction.

By repeating such a process for the other values of _ _ a group of

such curves can be obtained as seen in Fig.6. It is interesting to note

that somecurves for specified values of _ have more than one minimum

point. Consequently_ if the minimal values ( W" ) of these curves are
s'm

plotted against _ _ a few kinds of curves of W" are obtained as seen
s;m

in Fig.7. These local minima W" shown by (I) and (II) in Figo7
s_m,m

are the equilibrium points which satisfy the minimal conditions with

respect to all the parameters _ , _ , _ and m under a specified

value of _R/t ° The fact that there are several local minima means that

there are several possible equilibrium states under a specified shortening°

The values of W" on the local minima of (I) and (II) are
s,m_m

plotted in Fig.8. It seems that there are some other local minima in

addition to (I) and (II); however, because of the viewpoint that the

equilibrium state having the lowest value of W" will be the most
s_m_m

stable equilibrium state after buckling, only the lowest point was plotted

in Fig°8o Other local minima having a higher level of energy were thus

neglected. The lowest minimal point gives a point, under a specified

value of (eR/t) , on the load-shortening curve of Figo9o

By specifying other values of (eR/t) , the lowest minima yield the

postbuckling equilibrium curve in question shown in Figo9o The values

of @m ' Wm ' _m and _m corresponding to these equilibrium states

are plotted in Figs.lO, ii_ 12 and iS_ respectively°

As @ becomes smaailer along curve (II), the analysis loses its

-_L _bL
accuracy because e (e- ) was set equal to zero on the assumption

that the length of cylinder L or the damping coefficient @ is not too

small° Accordingly, the equilibrium curve in the region of larger (eR/t)

has been omitted here°

In the case of dead-weight loading_ the same process can be used

t

with the exception that W" and eR/t should be replaced by Wt and
S

(oR/Et) , respectively°
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The variation of the deflection parameters g and h in the four

parameters which are functions of _ and @ only in Eq.(42), is shown

in Figs.14 and 15, respectively. As far as the other parameters of e

and f are concerned, e is so small that it may be neglected_ and f

has a nearly constant value of about 1o52o
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i0. DISCUSSION

The numerical results obtained by the analysis will now be discussed

as follows_

(i) The minimal value of the axial stress in the possible equilibrium

states after buckling was found to be about 0.329. This value is higher

than those obtained by Kempner 5 and Almroth 6 for the case of overall

buckling° It is believed that this result arises from the insufficient

freedom of the assumed buckled pattern and from the incomplete satisfac-

tion of the continuity conditions along the center lines. Taking into

account more terms in the expression for the buckled pattern is expected

to make it possible to satisfy more continuity-conditions_ even though

it will make the analysis much more complicated. In the case of larger

values of @ , the violation of the continuity condition of the shearing

stress_ that is, of condition (B,8), seems to become rather serious°

Accordingly_ a refinement of the analysis is currently sought, by taking

into account one more term with an arbitrary coefficient, so that this

condition can be satisfied.

(2) The total strain energy has a minimum with respect to the damping

coefficient @ . The large values of @ give imaginary values of

which means that such cases cannot be realized. This suggests that the

local buckling pattern is a favorable mode of deformation which is likely

to arise in practice. This conclusion_ which is confirmed by many experi-

mental observations, represents the essential contribution of the present

paper.

(3) The ratio of the circumferential and axial wave lengths _ that

gives the minimal values of W" was found to be confined to a regions

close to 1.0_ as seen in Fig.ll. The larger values of _ away from 1.0

give higher values of the strain energy, which means that only the nearly

square diamond patterns can be realized_ as is usually observed in experiments.

In contrast_ the values of _ obtained by Kempner 5 vary within the wide

range of 0.i to 0.25 in the unstable region, and 0.25 to 1.2 in the stable

region in the case of rigid-testing-machine loading; and the value of
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corresponding to the minimal stress of 0.182 was found to be 0.562, even

though the minimal value of the stress is closer to the experimental

values.

(4) The effect of the length of the cylinder on the buckling stress has

been fully analyzed before_ even though it has been recognized in exper-

imental work. This effect will be partly explained as follows.

The curvature parameter A/_/L is one of the parameters in the

expression for eR/t of Eq.(6S). Thus the load versus shortening curve

depends on the value of _/L , and some typical curves are shown in

Fig.16 with three _/L values. The curves shift to the right as

_/L increases, that is, as L becomes smaller° The smallest value

of (eR/t), (6R/t)min , serves as a lower bound for the occurrence of

buckling in the case of rigid-testing-machine loading. The values of

the stress ( R/Et)min corresponding to this minimal value of the

shortening (6R/t)min can be used as an estimate of the buckling stresses,

even though it is necessary to jump over the rather high energy barrier

with the aid of some external energy. The buckling stresses defined above

are plotted in Figol7 from which it can be seen that they become higher

as the length of the cylinder decreases_ The effect of the length of the

cylinder is believed to be mainly due to the restriction along the bound-

aries, and it seems important to take into account the boundary conditions

in the analysis of a shorter cylinder. However_ the experimental evidence

that the experimental buckling stress becomes higher for shorter cylinders,

can be partly verified from such considerations of the effect of the

curvature parameter _/L .

(5) The buckled pattern obtained after satisfying the continuity con-

ditions is rewritten as:

w (_)_(2e-_X_e-2_x)I_ ( 1 2)cos 2ax+ sin sin by
y = - V + e+fw2)+_(g+hw _ ax

2>

5
while the buckled pattern used by Kempner can be expressed as follows:
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by transferring the origin of coordinate to the middle point of a ridge

as shownin Fig.2. The value of B was found to be very small, which

will justify the neglect of the cos 2by term in this analysis. The

first term in the bracket in which e is nearly zero and f is an

approximately constant value around 0.152, corresponds to the first term

of i/8_ 2 The difference between the two patterns exists in the second

term; that is to say, that in Eq. (42) is expressed in a parabolic form

with respect to _ , while that in Eq. (78) is expressed in a linear form.

The wave patterns along y = _y/k2 are shownin Fig.18 for the

three equilibrium points _ _ _ referred to in Fig.9 as examples. The

values of the deflection parameters for these points are listed in

Table i.

TABLE I

(c o.377 o.44 o.6o

w

e

f

g

h

o.88

o.38

1.4o

o.65

0.0017

O. 1501

-0.25O

-o.265

o.355

0.923

o.355

1.745

o. 515

0.0011

o.15o9

-o.235

-o.235

o.3818

ioo29

o.o87

1.65

o.5o8

0

o. 1528

-o. 137

-o.288

0.347
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The buckled patterns of _ and _ exhibit almost the two-tier

type of buckle, but the damping in _ is so small that this curve

exhibits a nearly sinusoidal overall buckling pattern° However, it is

expected that the damped pattern will be realized also in the range of

larger shortening as will be explained below.

(6) Two stable equilibrium states were found to exist under a specified

value of axial shortening° It will be reasonable to believe that the

equilibrium state having the lowest value of the total strain energy is

the most likely one after buckling° In this sense_ the equilibrium

curves marked (I) and (II) will be the most feasible stable states and

the value of the (oR/t) around 0.46 is the separating point of the

two kinds of equilibrium states_ of which (I) represents the highly

damped pattern_ while (II) represents the slowly damped patterns It is

unimportant that the two curves (I) and (II) are not connected continuously.

The cylinder will not necessarily take the equilibrium position with the

lowest level of energy in the postbuckling region_ but the buckling will

take place at a constant value of _ , that is_ with an integral number

of circumferential waves. With increasing end shortening_ the specimen

will jump into a new and similar buckled pattern reducing the number of

buckles by one_ as seen in the experiments of Thielemann 13. In order to

snap from a stable equilibrium position of higher energy level to another

stable equilibrium position_ a finite amount of external energy must be

supplied to the system° Accordingly_ it can be imagined that the stable

state (II) in the region of larger cR/t will not be easily realized

even though it has the lowest value of the energy°

The actual buckling is believed to follow the process shown in the

schematic diagram of Fig. 19 for the case of rigid-testing-machine loading°

With increasing shortening beyond (_R/t)min _ the shell will buckle

easily into the region of state (I), which has a highly-damped buckling

pattern_ because the energy barrier corresponding to the unstable equi-

librium state shown by the dotted line is very small. The equilibrium

curve having a constant number of n(D) will be followed for a while as

the shell is continuously compressed° But at one point (say, for example_

point _)_ the shell will snap through into another equilibrium curve
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having a value of n smaller by one_ because the energy on _ is

smaller than that on _ As the shortening increases, the damping is

expected to decrease as seen in Fig.10.

On the other hand, in the unloading process, the final curve marked

in Fig.19 will be followed for a while because the energy level is

lower than that on the adjacent curves. The equilibrium curve belonging

to category (II) which has smaller dampingwill not be realized unless

the cylindrical shell is compressedconsiderably.

From the above considerations, it is thought that it is important
to obtain the group of equilibrium curves for constant values of n(_)

in the investigation of the postbuckling behavior of shells. Such a

treatment will be discussed in a forthcoming paper_

(7) In this paper, the effects of initial imperfections on the buckling

stresses were not studied. Moreover_ stability considerations were not

given° The criterion of stability depends on the second variation of

W" or WI for the cases of rigid-testing-machine loading or dead-
weight loading. It can be shownthat the solid (lower) curve to the

right of the minimal value o£ cR/t has a positive value of the second

variation of strain energy indicating a stable equilibrium state, while
the dotted (upper) curve represents unstable equilibrium states. Although
the first variations are the samefor the two cases a = constant and

c = constant, such will not be the case for the second variation° Both
curves (I) and (II) are stable in the case of c = constant, but curve

(II) will be an unstable and curve (I) will be only a locally stable

state having a higher level of energy in the case of _ = constant°

There is another stable state in the range of large deflections which

was not considered here_ because the buckling pattern without damping

gives the lowest level of the total potential energy_ and this analysis

loses its accuracy in this region
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